

UGANDA BUSINESS AND TECHNICAL EXAMINATIONS BOARD

Business and Humanities Certificate Examinations

APRIL-MAY 2022 SERIES

PROGRAMME

CERTIFICATE IN INFORMATION AND COMMUNICATION TECHNOLOGY

PAPER NAME

INTRODUCTION TO ADVANCED LEVEL PHYSICS I

PAPER CODE

CAP III

YEAR I, SEMESTER I

21/2 HOURS

THURSDAY, 5TH MAY, 2022

INSTRUCTIONS TO CANDIDATES

- 1. This paper consists of two sections A and B.
- Section A is compulsory and carries 20 marks.
- 3. Section B consists of six questions. Answer only four questions from this section.
- 4. All answers to each question in sections A and B should begin on a fresh page.
- 5. All answers and rough work should be done in the official answer booklet provided.
- 6. Non-programmable electronic calculators may be used.
- 7. Read other instructions on the answer booklet.
- 8. Where necessary assume the following constants;
 - Acceleration due to gravity $g = 9.8m/s^2$
 - Electronic charge $e = 1.6 \times 10^{-19}c$
 - Electron volt (ev) = 1.6×10^{-19} joules
 - Velocity of light in a vacuum = $3.0 \times 10^8 m/s$
 - Universal gravitation constant $G = 6.67 \times 10^{-11} Nm^2 kg^{-2}$
 - Plank's constant $h = 6.63 \times 10^{-34} Js$
 - Mass of the earth = $6.0 \times 10^{24} Kg$
 - Radius of the earth = $6.4 \times 10^6 m$
 - Avogadro's constant $N_A = 6.03 \times 10^{23} mol^{-1}$
 - Mass of electron = $9.11 \times 10^{-31} kg$
 - The ratio $C_P/C_V = \gamma = 1.41$
 - The molar gas constant = $8.31 Jmol^{-1}k^{-1}$

SECTION A - (20 MARKS)

Answer all the questions in this section.

Question One

- (a) State the principle of **conservation of mechanical energy**. (01 mark)
- (b) A particle of mass 400g is projected vertically upwards with an initial speed of 5ms⁻¹. Calculate the;
 - (i) Kinetic energy possessed by the particle at the point of projection. (03 marks)
 - (ii) Maximum height reached.

(03 marks)

(iii) Time taken to reach the maximum height.

(03 marks)

- (c) (i) State the **two** conditions for mechanical equilibrium of a rigid body.(02 marks)
 - (ii) A uniform meter rule of mass 30kg is pivoted at the 80cm mark. Determine where a load of 10kg should be placed for the meter rule to balance horizontally.
 (03 marks)
- (d) Define the following terms as applied to mechanical properties of matter.
 - (i) Tensile stress.

(01 mark)

(ii) Tensile strain.

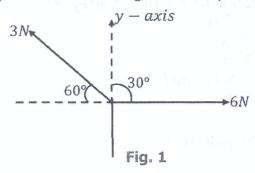
(01 mark)

(e) A spring stretches by an extension of 20cm when a force of 40N is applied. Calculate the extension produced by a stretching force of 60N? (03 marks)

SECTION B - (80 MARKS)

Answer only four questions from this section.

Question Two


(a) (i) State the **principle of moments**.

(01 mark)

- (ii) A uniform beam AB of mass 20kg and length 4m is pivoted at A and B. A load of weight 15N is suspended at point C 1m from B. Find the reaction at the supports. (07 marks)
- (b) Explain how you can determine the centre of gravity of an irregular lamina.

(06 marks)

(c) A particle of mass 5kg is acted upon by 3 forces as shown in **Fig.1**

Question Three

- (a) Define the following terms as applied to circular motion.
 - (i) Angular velocity.

(01 mark)

(ii) Period.

(01 mark)

(iii) Banking.

(01 mark)

- (b) A body of mass 56kg moves in a circular circle of radius 20cm at a speed of 25ms⁻¹. Calculate the;
 - (i) Centripetal acceleration

(03 marks)

(ii) Centripetal force

(03 marks)

- (c) (i) A car of mass mkg moves along a smooth track banked at an angle θ to the horizontal. If the radius of the track is r, show that the speed V of the car is given by $\tan \theta = \frac{V^2}{rg}$. (03 marks)
 - (ii) A car of mass 100kg moves around a smooth track of radius 62.5m at a speed of 22.5ms⁻¹. Find the angle of banking of the track. (04 marks)
- (d) A particle of mass 8kg is attached to the end of a light string of length 120cm and whirled in a vertical circle at a speed of 14ms⁻¹. Find the maximum tension in the thread.

Question Four

(a) (i) Define **Young's modulus** of a material and state its S1 unit.

(02 marks)

- (iii) With the aid of a well labeled diagram, describe an experiment to determine the young's modulus of material (09 marks)
- (b) A wire of length 2m is stretched by a force of $4.0 \times 10^5 N$. If the Young's modulus of a wire is $2.1 \times 10^9 Pa$ and the extension produced is 50cm, find the;
 - (i) Strain of the wire.

(03 marks)

(ii) Stress of the wire.

(03 marks)

(iii) Cross sectional area of the wire

(03 marks)

Question Five

- (a) Distinguish between **renewable sources** of energy and **non-renewable sources** of energy and state **two** examples of each case. (06 marks)
- (b) (i) Define **power** and state its S1 units.

(02 marks)

- (ii) A boy of mass 42kg climbs a hill of length 6m in a time of 2 minutes. Calculate the rate at which he climbs the hill. (03 marks)
- (c) Show that when a particle of mass mkg is projected vertically upwards with an initial velocity ums⁻¹, the mechanical energy is conserved throughout its motion. (09 marks)

Question Six

- (a) Distinguish between **vector quantities** and **scalar quantities**. Give **two** examples in each case. (06 marks)
- (b) A body changes its velocity from Ums^{-1} to Vms^{-1} in a distance S. Given that its accelerating at ams^{-2} , find the expression for the distance S in terms of V, U and A. (04 marks)
- (c) A particle is projected from the horizontal ground with a velocity of 21ms⁻¹ at an angle 30° to the horizontal. Calculate the;
 - (i) Maximum height reached.

(04 marks)

(ii) Time taken to reach maximum height.

(03 marks)

(iii) Horizontal range covered.

(03 marks)

Question Seven

(a) (i) Define **frictional force**.

(01 mark)

(ii) State **two** properties of friction.

(02 marks)

- (b) A block of mass 200g slides on a rough horizontal surface. Calculate the frictional force experienced on the block if the coefficient of friction between the block and surface is 0.25.
- (c) Distinguish between kinetic energy and potential energy.

(02 marks)

(d) State work energy theorem.

(01 mark)

- (e) A particle of mass 4kg slides on a rough horizontal surface. Its speed decreases from $8ms^{-1}$ to $6ms^{-1}$ in a distance of 5m. Calculate the;
 - (i) Work done against friction.

(03 marks)

(ii) Coefficient of friction

(03 marks)

(f) A particle is projected at an angle θ to the horizontal with a velocity of ums^{-1} . Show that the time of flight is given by $\frac{2u\sin\theta}{g}$. (04 marks)

END